. g O BT ~ Hilde Hummel |

Centrum Wiskunde & Informatica




‘Machine Learning

Artificial Intelligence

“The use and development of computer systems that are
able to learn and adapt without following explicit et me e
instructions, by using algorithms and statistical models
to analyze and draw inferences from patterns in data.”

Deeplearning




Its application in Underwater Acoustics
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The Challenges
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ARTICLE INFO ABSTRACT

Keywords: The utilization of machine learning in analyzing ship radiated noise (SR-N) is undergoing rapid evolution. Be-
Ship radiated noise cause the omnipresent background noise strongly depends on the highly variable environment, the application
Machine learning of such techniques poses challenges. Furthermore, publicly available labeled datasets are scarce. Motivated
Survey

by this, there has been a surge in the number of publications regarding the implementation of machine
learning in the monitoring of SR-N within the past few years. This comprehensive survey delineates the state-
of-the-art machine learning techniques applied to SR-N, with a specific focus on passive measurements. Recent
developments are categorized into several sub-areas, namely; publicly available datasets, data augmentation,
signal denoising, feature extraction, detection, localization, and recognition of SR-N. Additionally, future
research directions are explored.

Deep learning
Underwater sound




The Corhmon plpellne An eXamp\e
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Domingos, Lucas CF, et al. "An investigation of preprocessing filters and deep learning methods for
vessel type classification with underwater acoustic data." IEEE Access 10 (2022): 117582-117596.
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Preprocessing
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Domingos, Lucas CF, et al. "An investigation of preprocessing filters and deep learning methods for
vessel type classification with underwater acoustic data." IEEE Access 10 (2022): 117582-117596.
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The need fordata

e Supervised learning

is the state-of-the-art method

* VGG16: 138 million parameters!!

Feedback




A different view: The foundation model

Earthquakes

Nuclear Testing

Climate Change
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Arwin Gansekoele

Unsupervised Learning

Self Supervised Learning
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