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Artificial Intelligence (AI), Machine

AI 1s ..the use
of technologies to
build machines and
computers capable

of mimicking human

cognitive
functions:

+ Seeing

* Feeling

* Smelling
* Listening

* Reasoning

* Responding ..

Sensors in Al
Are used
during and
after events.
(Pxedicting)

Reinforced
learing ..

(0 ®

learing (ML) and Deep learing

ML is .. aset
of statistical (or
not) databased
learning
algorithms for:

* Predicting
+ Classifying
* Deciding

* Optimizing
* Augmenting
* Reducing

* Generalizing

DL is .. one
subset of ML
methods based
on ANN’s with
specific model
architectures for:

* Predicting
 Classifying
* Deciding

* Optimizing
* Augmenting

* Reducing

* Generalizing

Sensors in ML/DL

are used before
events.
(Training and
Validation)
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3500 Primary Dikes + 14000 Regional Dikes

: 2021
Dikes are
deterlorat1n§ faster
due_to climate change
cycles (Flood and drought)

We need to monitor
them more “densely”
and frequently.

Its to much woxrk if

humans are best .
monitoring “devices”.

We need sensors but
they produce too much
data.




3 Cases for 3 questions

a) Where to place pressure sensors to predict
Backward Erosion Piping ?

Method: PCA

b) Which dikes are more prone to develop drought Manuel Wewex

induced cracks?
Method: (Random Forest) Decision Trees ~

c) How to detect cracks with distributed Shaniel Chotkan
temperature fiber optic sensors ?

Method: Convolutional encoders
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Case a: Where and how many pressure head (Hp)
sensors to predict/monitor Backward Exrosion Piping
(BEP) ?
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1. Scenario: Sensor placements in the entire aquifer

2. Scenario: Sensor placements at the sides of the dike

o\ ” \‘;-\yl

J‘ ,
"Development of an optimal sensing strategy for dike monitoring of backward erosion piping I U De[lk E
with fibre optic cable based sensoxrs” MSc Thesis Manuel Wewer (2019) - TU Delft/TU Dresden



We proposed a time dependent
physically based BEP model

A transient backward erosion piping model based on laminar flow transport equations. Wewer, M., Aguilar-
Lopez, J. P., Kok, M., & Bogaard, T. (2021). Computers and Geotechnics, 132, 103992
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We implemented an ML Method:
Principal Compoment Analysis (PCA)

Original Data Transformed Data
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These are the main components and
interestig findings ©
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1. We Detexrmine PCA’'s in time
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Results: Scenario 1
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on a Paretto front of 2 dimensions.



Results: Scenario 2
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Please note that the best locations are not necessarily the most
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Pressure head [m]

PCA vs Actual BEP-FEM

IJkdijk - Pressure distribution at the erosion zone - With measurement errors
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Case b: Which dikes are more prone to develop
drought induced cracks?

le6
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Let’'s use PROXY variables to try to predic observations !

" Predicting drought-induced cracks in dikes with artificial intelligence " MSc Thesis Shaniel

Chotkan (2021) - TU Delft I U Dﬁlﬁ}b

Chotkan, Shaniel, et al. "A data-driven method for identifying drought-induced crack-prone levees based
on decision trees." Sustainability 14.11 (2022): 6820.



We analyzed the inspections and crack location
between 2018-2021
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What data do we

Attribute Description

ObjectlD The characteristic number of the specific observation. This at-
tribute is used to identify elements.

Dijkvak Delfland has multiple manners in which they divide their dike
sections. One of them is splitting up the drought sensitive dikes
in parts of 100 meters. These sections are then labeled again,
resulting in this attribute.

Typekering The type of dike. In this case of the scope of this thesis this will
always be a regional levee.

Locaties schade  The location on the dike where the observation is situated. This
may for example be on the crest but also on the whole dike
body.

Parameter The specific type of observation. Examples are subsidence and
cracks.

Lengte The length of the crack in meters.

Breedte The width of the crack in meters.

Diepte The depth of the crack in meters.

Patroon This attribute indicates whether multiple observation parame-
ters are present on the specified coordinates or a single one.

Richting The orientation of the observation in the case of a crack. This
feature was not accounted for in all of 2019.

Datum observatie The date at which the parameter is observed.
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All data is intrinsic to the crack and
not to the drought process.

2018

Observed Cracks

55

Observed non-cracks

LY

Not inspected

Kilometers inspected

25

2019

Observed Cracks

61

Observed non-cracks

15

Not inspected

Kilometers inspected

2020

Observed Cracks

368

Observed non-cracks

116

Not inspected

67

Kilometers inspected

173
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How can we predict them ?
We need to do data “augmentation” !!!

L . Attributes
Precipitation deficit
— « Spatial coordinates
* Date of observation
Precipitation l TTT Evaporation i i
P l l po == . Srack dlrr'\'enflons }
_______ 679568 | Cracks 2019 *  “Crack(s)"” \ “No crack
| Soil subsidence : Cracks 2020 ‘ ¢ Crack direction
6.7954

« ID

* Location on dike body
* Precipitation Deficit

* NDVI

* Soil subsidence

* Soil class and strength

NDVI l 6.7952
AN
6.7950 RS

6.7948

Soil class SToee * Soil orientation
Soil flexibility " A *  Peat width
Peat thickness N » :

6.7942

6.7940 R :
Levee orientation = 4%000 490250 490500 490750 491000 491250 491500 491750 492000

.............................................................

In a GIS environment, we located all cracks. For the same locations,
we extracted timeseries of soil subsidence, Precipitation,

evaporation, soil subsidence and NDVI “green-ness”. In addition, \
local soil characteristics where also included. Eﬂ@fi
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All variables come from different sensors at
different spatial and temporal resolution..
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Observation state 1

Flexibility

Aspect

NDVI

Subsidence rate

Precipitation deficit

Peat thickness

Soil Class

Association analysis (Cramex’'s V)
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Observation state 1

(Length > 2 mts)

Flexibility

Interorotason of © in

Estimated values Interpretation of association
0.00-0.10 Negligible
0.10-0.20 Weak
0.20-0.40 Moderate
0.40-0.60 Relatively strong
0.60-0.80 Strong
0.80-1.00 Very strong

Aspect

Cre-statisses or Cramérs V

NDVI

Subsidence rate

Precipitation deficit

Peat thickness

0.6

-0.2

-0.1

0.0

Observation state 1: Yes/No
cracks (Length > 2 mts).
Inspectors might not easily
Identify them

Observation state 2: Yes/No
cracks. Negatives were just

random sampled from locations

Where crack were not observed.

So, we decided to build two models..

fup

)H ||

Ht



We implemented an ML Method:

Principal Compoment Analysis (PCA)

Flexibility <= 0.335
gini = 0.5
samples = 987
value = (490, 497]
class = Positives

Peat thickness <= 31,0/
L) gini = 0.499
value = [49, 28] samples = 357
class = Nega'tives value = [185, 172]
| class = Negatives

Cumulative <= 208,293
gini = 0,478
samples = 271
value = [164, 107)
class = Negatives

Aspect <= 207.29
gini = 0.496
samples = 118
value = (54, 64]
class = Positives

[\

gini = 0.498 gini = 0,461 gini = 0,469
samples = 68 samples = 50 samples = 96
value = (36, 32] value = (18, 32] value = [60, 36]

class = Negatives clags = Positives class = Negatives

From this models, we learn for example that cracks (2 mts)
are not observed on soils characterized by a low

Model 1
(Cracks > 2 mts)

Cumulative <= 288.222
gini = 0.485
samples = 758
value = (313, 445)
class = Positives

| = Model 1
Subsidence Rale- s Model 2
Aspec(L
vovi N

Peat thickness -
preciptation deici | —

Flexibility

00 01 02 03 04 05 06 07

Feature importances

Aspect <= 184.006
gini = 0.492
samples = 119
value = [52, 67)
class = Positives
gini = 0.496 ginl =
samples = 66 ¢ 5
value = [36, 30]
class = Negatives

flexibility.

gini = 0.482
samples = 84
value = [34, 50]
class = Positives.

/

Cumulative <= 311.285
gini = 0.5
samples = 1316
value = [664, 652]
class = Negative

gini = 0,469
=413
value = 258, 155]
class = Negative

gini = 0,496
samples =77
value = (35, 42]
class = Positive

From this models, we learn for example that
cracks only occur with both drought and
subsidence.

Model 2
(A1l cracks)




We trained and used a Random forest

model for hazard mapping

Empirical hazard map Delfland ranks

35

- Rank 1
30 P RankZ
Rank 3

les {C) Esri - Esri. Delorme. NAVTEQ

Tiles (C) Esri ~ Esn. Delorme, NAVTEQ 0

Figure 17. The (left) image shows the constructed empirical hazard map. The (right) image shows
the Delfland ranks for comparison with the other maps.

Decision tress showed us that:

Long cracks are not observed on levees for flexibility was smaller than 0.355 m/kPa.

Long cracks (longer than 2mts) are more often found on levees of which the slope is oriented towards the southern
side.

Both model trees state that a peat thickness of the upper layer of at least 31 cm indicates that levees are
susceptible to the formation of cracks. B
Levees composed of soils which have peat layers thinner than 31 cm do not seem to crack for precipitation deficit L_ ) ) ||
values lower than 311 mm. N 4



Case c: How to detect desiccation cracks in
dikes with fiber optic sensors and deep
learning algorithms?

"Crack detection for dikes using distributed temperature sesnsing” MSc Thesis Simone de Roos
(2022) - TU Delft

De Roos, Simone, et al. "Understanding the thermal response of an unburied fiber-optic LA
sensor for dike cracks detection." submitted to - Sensors Journal 2022. I U D€ E)‘t‘ﬁ
LI >

éa

Grant No. NWA.1228.192.258 Idea Generator (50k€) “Crack detection with FOS and DL”

Leonardo Duarte
TUDELFT -GeoSciences
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Simone de Roos
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Thermal Distributed Fiber
Optic Sensing (DTS)

DAS Interrogator Backscatter Spectrum
F ;
Pulsed laser signal — Rayleigh

: 2 acoustic sensin
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(distributed temperature
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FO Cable

1
]
1 (distributed
i
\
|

Raman

\ (distributed

Heat temperature sensing)
° / emission - A
N0
(]

Anti-Stokes process Stokes process

Intensity

O Wavelength

___________________________________________________

i Atomic structure and impurities of glass fiber
re-organize due to local heat and strain changing its
photoacoustic intrinsic properties in time and space
influencing light propagation properties such as
intensity, phase, polarization and wave-length.

Optical Fibre Scatter Site

Light Pulse

Altered Backscatter
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We monitored a dike and its
crack for 3 months

36 lines of Fiber O t1c
Thexrmal sensor (DTS

Spatial res = 0. 25[m]
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Heat distribution maps along the dike

Thermal camara (320x256) DTS Interpolation (320x256) ) .
1 We have temperature points measured every 30 mins

on a spatial
Resolution of 0.25m. Cables are spaced every 0.5m.

I

I

I With this information we generated heat
' distribution maps based on a Kriging

I interpolation.
I

I

I

=l

We extracted 16x20 from interpolation and resized
to 256x320 so that Thermal camara and DTS are
aligned.




We built and trained a convolutional high-
resolution image to image encoder-decoder
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Data augmentation (DTS+TRC)

We Started with:
Dataset: 992 images of 256x320

We crop them by half.
Dataset: 3968 images of 128x160

200 We crop 3 more blocks in locations

with and with cable and crack.
Dataset: 3968 + 2976 images of 128x160

250

We flip them and mirror them.
Final Dataset: 31,744 of 128x160

200

250

0 100 200 300 0 100 200 300

] A
TUDclft



The results are promising but more
training and architecture testing is needed.
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We set for 1000 epocs and finished
early in 602 epocs with a mean loss
on val o 4.64e-4. Around 1.4
degrees Celcius
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Conclusions

*Machine learning can be used to design a sensor system
based on dimensilonality reduction capacity.

ALl requires sensors before being operational (ML) and
after becoming operational,

*Sensor combination can pose a _challenge in AI and ML
performance due to 1ts variability in frequency and
spatial resolution.

AT, ML and DL are tools for knowled%e augmentation.
However, their capacity 1s_completely determined by the
sensor with highest spatial resolution and frequency.
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